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1. Introduction

String field theory (SFT) provides a non-pertubative framework to analyze various string

backgrounds in a unified way. Several classical solutions have been constructed in SFT

numerically and analytically, and each of them represents the tachyon vacuum, backgrounds

with marginal deformations or rolling tachyon and so on [1]–[18]. The most important

progress of recent works in SFT is that Schnabl constructed an analytic classical solution [2]

in Witten’s open bosonic SFT [19]. The solution is represented as

Ψ(λ) = lim
N→∞

[

λN+1ψN −

N
∑

n=0

λn+1∂nψn

]

,

where ψn denote wedge states with certain ghost and anti-ghost insertions, and λ is a real

parameter. It is believed that for λ = 1 the solution corresponds to the non-pertubative

tachyon vacuum and otherwise the solution should be referred to a trivial pure gauge

configuration. It is partly because the above wedge based expression provides correct

vacuum energy density expected for the tachyon and the trivial solutions [2].

The crucial difference between the tachyon vacuum and the trivial pure gauge solution

seems to be included in the first term of the above expression, so-called the phantom term.

Obviously, this term becomes ψ∞ at λ = 1, and if |λ| < 1 it is equal to zero due to the

factor λN+1 (N → ∞). Actually, if the first term is not involved in the solution, we can

not derive the correct vacuum energy from analytic calculation using quadratic parts of the

action [2]. Besides, it is pointed out that the first term is indispensable for the equation of

motion contracted with the solution to be satisfied [20, 21]. In other words, the first term

is needed to calculate the vacuum energy using the total action with cubic terms, instead

of the quadratic action reduced by the equation of motion.

In spite of the important effect of the phantom term, it is known that it becomes to

be “zero” also for the case λ = 1. More precisely, the inner product of ψN with any Fock

space state vanishes for taking the N → ∞ limit, and therefore the first term is regarded

as zero in the Fock space representation. Consequently, it is often said that the phantom

term is representative of analytic solutions beyond the Fock space expression.
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Interestingly, the analytic solution is regular from the viewpoint of level truncation as

pointed out in the first place [2]. In fact, the solution for λ = 1 reproduces the correct

vacuum energy density in level truncation with respect to the L0 operator. This energy

density was calculated only by using the quadratic action and it is never affected by the

phantom term because the truncated solution is a state inside the Fock space. Here, it is

natural to ask whether the correct energy density can be reproduced from level truncated

calculation using the total action with cubic terms, despite the crucial term is irrelevant.

To examine this question is the main motivation in this paper.

In the following, we will calculate the vacuum energy density numerically by truncating

the analytic solution and using the action with and without the cubic terms. We will

evaluate it for all values of λ providing a regular solution in the level truncation calculation,

although only the λ = 1 case was evaluated so far using the quadratic action. Finally, we

will discuss the role of the phantom term to yield the correct vacuum energy density in the

last section.

2. Level truncation of the analytic solution

The analytic solution Ψ(λ) can be written as

Ψ(λ) = −

∞
∑

n=0

λn+1∂nψn, (2.1)

where we first take the N → ∞ limit and use the fact that ψ∞ = 0. Strictly speaking, this

expression is correct in the Fock space representation. From the definition of ψn in ref. [2],

we can write the solution explicitly as

Ψ(λ) = −
1

π

∞
∑

n=2

λn−1 d

dn

{

U †
n

[

n

π
B†

0 c̃

(

−
π

2

n − 2

n

)

c̃

(

π

2

n − 2

n

)

+c̃

(

−
π

2

n − 2

n

)

+ c̃

(

π

2

n − 2

n

)]}

|0〉 . (2.2)

This expression is almost the same as that given by Schnabl except for inclusion of λ. After

operating the ghost fields on the Fock vacuum, we find

(c̃(−x) + c̃(x)) |0〉 = 2cos2 x c1 + 2 sin2 x c−1 |0〉 + 2cos2 x tan4 x c−3 |0〉 + · · · (2.3)

c̃(−x)c̃(x) |0〉 = −2 cos4 x tan x c0c1 |0〉 − 2 cos4 x tan3 x(c0c−1 + c−2c1) |0〉 · · · . (2.4)

The operator B†
0 is expanded by negative modes of usual anti-ghost oscillators. The oper-

ator U †
n can be expressed in the canonically ordered form as

U †
n = · · · eu6 L

−6eu4 L
−4eu2 L

−2

(

2

n

)L0

, (2.5)

where un are real numbers as given in ref. [2]. These equations allows us to express the

analytic solution as a state in the Fock space.
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For example, let us expand the solution up to level 2:

Ψ(λ) = t c1 |0〉 + u c−1 |0〉 + v (α−1 · α−1)c1 |0〉 + w b−2c0c1 |0〉 + · · · . (2.6)

The component fields, t, u, v and w, are given as infinite serieses in the following,

t(λ) =

∞
∑

n=2

λn−1 d

dn

[

n

π
sin2

(π

n

)

(

−1 +
n

2π
sin

(

2π

n

))]

, (2.7)

u(λ) =

∞
∑

n=2

λn−1 d

dn

[(

4

nπ
−

n

π
sin2

(π

n

)

)(

−1 +
n

2π
sin

(

2π

n

))]

, (2.8)

v(λ) =

∞
∑

n=2

λn−1 d

dn

[(

2

3nπ
−

n

6π

)

sin2
(π

n

)

(

−1 +
n

2π
sin

(

2π

n

))]

, (2.9)

w(λ) =

∞
∑

n=2

λn−1 d

dn

[

sin2
(π

n

)

(

8

3nπ
−

2n

3π
+

n2

3π2
sin

(

2π

n

))]

. (2.10)

All of these converge absolutely if |λ| ≤ 1 and the same is true up level 10. A component

field is given by a power series as
∑∞

n=2 λn−1an if it is non-zero. We can easily check that

the radius of convergence is 1 for these component fields up to level 10. For |λ| = 1, we

expand as an/an+1 = 1 + h/n + O(1/n2) and we can find h > 1 up to level 10. Hence, the

series is convergent for |λ| ≤ 1.

The expression (2.1) satisfies the equation of motion for arbitrary λ, that is proved

only by using the identity of ψn irrelevant to λ [2]. It is not clear for what range of λ

the solution should be defined. However, λ must take the value between −1 and 1 if the

solution has a well-defined Fock space expression.

It is difficult to derive analytic expressions for these serieses. If we expand coefficients

in the series in powers of 1/n, only terms 1/n4, 1/n6, 1/n8, · · · appear in it. Therefore, we

can sum up the series numerically with extreme precision as mentioned in ref. [2]. These

fields obey a symmetry generated by Kmatter
1 for any λ as in case of λ = 1 [2]. Using this

symmetry, we can check numerically whether the calculated result is correct or not. The

resulting plots of the above fields are depicted in figure 1. These values at λ = 1 coincides

with those of earlier results in ref. [2]. Each curve for component fields smoothly varies

from zero at λ = 0. It has no discontinuity even at λ = 1, despite the vacuum energy

should fall down from zero to the minus energy at λ = 1.

While the λ 6= 1 case is expected to be trivial pure gauge, the λ = −1 case is exceptional

because the solution for λ = −1 satisfies the symmetry

(−1)L0L0Ψ = L0Ψ.

It is the same symmetry satisfied by the tachyon vacuum solution and therefore the solution

in that case may be regarded as a non-trivial vacuum [2]. However, at the λ = −1, all

component fields are continuous similar to those of λ = 1.

Now, let us compute the vacuum energy using the action with the quadratic terms

only. Using the equation of motion, the vacuum energy density is given by

Vq(λ) =
π2

3
〈Ψ(λ), QBΨ(λ)〉 , (2.11)
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Figure 1: Component fields up to level 2. Each curve consists of two thousand plots with lines.
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Figure 2: The energy density for level 2. It is calculated only with the quadratic terms of the

action.

where it is normalized as to be minus one for the tachyon vacuum. Substituting the

truncated solution into it, we can calculate the energy density as a function of λ. For level

2 and 0 ≤ λ ≤ 1, we make a graph of the vacuum energy density in figure 2. As given in

ref. [2], the energy density at λ = 1 is good agreement with the correct density even at

level 2. For 0 < λ <∼ 0.3, the energy density is almost zero and it is well-behaved as a pure

gauge solution. We can not understand this zero energy density trivially by the values of

component fields in figure 1. This good property can be regarded as a result of cancellation

of each contribution of all component fields.

We consider higher level approximation for full range of λ. We have computed com-

ponent fields up to level 10. We display the result in figure 3. Around λ = 0, we have
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Figure 3: The energy densities up to level 2, 6, 10 which are calculated only with the quadratic

terms of the action. Each line is drawn as two thousand points with lines.
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Figure 4: The energy densities up to level 10 which are calculated only with the quadratic terms

of the action. Each line is drawn as one thousand points with lines.

almost zero energy density for all level. For λ ∼ −1, the energy density approaches zero

as the truncation level is increased. This result is consistent with the expectation that the

solution is a trivial pure gauge solution for −1 ≤ λ < 1. Around nearby λ = 1, we can not

distinguish each curve from the others. So, we enlarge the resulting plots for higher levels

around λ ∼ 1 in figure 4. We find that the energy density approaches slowly but gradu-

ally to the correct value as the approximation level is increased. Consequently, although

the plots may approach a critical curve for higher levels, the result is consistent with the

expectation that, if the truncation level goes to infinity, the plots approach to the step

– 5 –



J
H
E
P
0
1
(
2
0
0
8
)
0
0
1

L = 0 L = 2 L = 4 L = 6 L = 8 L = 10

(L, 2L) -0.577920 -1.081077 -1.054081 -1.036779 -1.025645 -1.018552

(L, 3L) -0.577920 -1.065177 -1.047979 -1.032868 -1.023261 —

quad. terms -1.007766 -1.007815 -1.004499 -1.003217 -1.002556 -1.002130

Table 1: Energy density calculated by the full action. For comparison, energy density calculated

by the quadratic action is listed in the last row.

function,

f(λ) =

{

0 (−1 ≤ λ < 1)

−1 (λ = 1).
(2.12)

Next, let us compute the energy density using the total action including cubic terms,

which is given by

Vf (λ) =
π2

2
〈Ψ(λ), QBΨ(λ)〉 +

π2

3
〈Ψ(λ), Ψ(λ) ∗ Ψ(λ))〉 , (2.13)

where we have used the same normalization as before.

For λ = 1, the resulting energy density is summarized in the following table. For level

zero, the energy density is −0.57 · · · and it is about one-half of the correct density. But,

it is comparable to the level zero result in Siegel gauge, −0.68 · · ·. The both results of

(L, 2L) and (L, 3L) are almost the same. The level 6 and 8 results of (L, 3L) are closer to

−1 than that of (L, 2L). Up to level 10, the energy density agrees with the correct value

to 10−1, but that is worse than the result calculated by the quadratic action. However, we

can find that the resulting energy approaches to the expected value -1 as the truncation

level is increased.

We proceed to consider the full range of λ. In figure 5 and 6, we display the energy

density evaluated by the truncated actions of (L, 2L) and (L, 3L), respectively. Around

nearby λ = 0, the energy density is almost equal to zero. Around λ = −1, the energy

density approaches to zero as the truncation level is increased, but from the positive energy

region as contrasted to the calculation by the quadratic action. Even in the case using the

total action, we can find that the resulting plots gradually become the step function as the

level is increased.

3. Discussions

We calculated the vacuum energy density for the analytic classical solution constructed by

Schnabl using its Fock space expression. We found that, as the truncation level is increased,

the resulting plots approach to the step function for |λ| ≤ 1. The result is consistent with

the fact that the solution for λ = 1 is the tachyon vacuum solution and otherwise it

corresponds to a trivial pure gauge solution. In particular, our calculation suggests that

the solution for λ = −1 is also trivial, although it possesses the same symmetry as the
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Figure 5: Energy density evaluated by the (L, 2L) truncated action.
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Figure 6: Energy density evaluated by the (L, 3L) truncated action.

tachyon vacuum solution. Consequently, the analytic solution is well-behaved for |λ| ≤ 1

from the point of view of level truncation.

Our analysis was based on level truncation calculation and therefore the phantom term

does not contribute to the vacuum energy density. Our result suggests that the phantom

term is not indispensable to reproduce the correct vacuum energy, although the phantom

term is an important ingredient to evaluate the vacuum energy analytically.

It is no wonder that the phantom term plays a whole different role in each expression of

the solution. Because, a string field is given as a state in the Hilbert space with an indefinite
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metric, namely string field theory does not possess a positive definite norm. Actually, the

correct vacuum energy was reproduced as a result of cancellation between positive and

negative infinite energy. This fact can be found most clearly in the solution expanded in

L0 eigen-states. Using the solution truncated with respect to the L0 level, we find that

the vacuum energy density is not convergent as the truncation level is increased. But,

surprisingly, the Padé approximation to the divergent series can reproduce correct vacuum

energy both for λ = 1 [2] and λ 6= 1 [22]. This result of the L0 truncation indicates that

the vacuum energy density for the solution is given as a conditionally convergent series.

Hence, to define the analytic solution, an important point is how to regularize it in

SFT based on the indefinite metric. In the wedge based expression, the integer N seems to

be a kind of regularization parameter. The phantom term is important only if we regularize

the solution in terms of N . Our results suggest that the truncation level L can be regarded

as a good regularization parameter as well as N . If that is the case, we will find that the

vacuum energy from the truncated solution agrees with the correct value as the L goes to

infinity, that is

lim
ǫ→0

π2

3

〈

e−ǫL0Ψ(λ), QBe−ǫL0Ψ(λ)
〉

=

{

−1 (λ = 1)

0 (−1 ≤ λ < 1).
(3.1)

We expect a similar behavior for the vacuum energy including the cubic terms. In any

case, the phantom term has no effect on the conjectural equation.

The parameters N and L seem to provide a sort of “correct” regularization. Eventually,

a crucial issue is how we can regularize the solution or the theory “correctly”. It is well-

known that symmetry is a key role to regularize a quantum field theory of gauge fields,

which is formulated in the framework of the indefinite-metric theory. In contrast, we

still lack the criterion for “correct” regularization in string field theory. For example, the

vacuum energy for the identity-based solution is given as an indefinite quantity [18, 23].

We hope that the Schnabl’s solution will help to find a good way to regularize string field

theory in order to search non-pertubative vacua further.
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